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1. INTRODUCTION

There are many references on numerical evaluation of Cauchy-type
integrals

tEL (1.1)

(possibly, with a weight function), using orthogonal polynomials when L is
an interval on the real axis, e.g., [1---4 J. If L is the unit circle, it was shown in
[5 J that such integrals are approximated by interpolatory polynomial splines
of any odd degree under the assumption that the density function f(t) is
holomorphic in the interior and continuous on the boundary of the circle up
to a certain order of its derivatives. In [6], the same problem under a similar
hypothesis on f(t) was discussed for cubic interpolating splines in case L is
an arbitrary smooth closed contour.

Let L be an arbitrary smooth curve, closed or open (L = lib), and

A: a = to < t l < ... < tN = b

be a partition of L (tN = to when L is closed), where L j < Lj+ I means that Lj

precedes L j + I when one travels along L in its given direction. If f(t) is a
function E H a (Holder condition) on Land St,(t) linearly interpolatesf(t) at
the t/s, Atkinson [7J succeeded in proving the uniform convergence of TL S t,
to TLf when L is closed,

(1.2)

where C, is a constant independent of A, provided

K,., = max Itj+ I - tjl/min Itj+ I - tjl

is bounded for all the A's.
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(1.3)
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This result was proved by using a theorem (cf. [7, Theorem 2]) which
itself depends on an interesting but complicated lemma. We find that it may
be easily proved by the following simple approach. Let L be a smooth
contour and f(t) E HO: (0 < a < 1) on it. In the Banach space HO:, we know
[8] that

IlfllHa = Ilfll oo +Mo:(J),

where

Mo:(J) = sup If(t) - ~~/)I ;
t,t'EL /t-tl

then the operator TL is linear with norm II TL 110:' Therefore,

(1.4)

(1.5)

Now, iff E H' (0 < e < 1) and fn E H' is a sequence of functions on L, and
if we can estimate Ilell(t)lloo = Ilf(t) - fll(t)llaJ and M.(e ll ), then, by (1.6), we
may estimate II TLenll aJ by

(1. 7)

We shall use (1.7) to estimate IITLedlloo=IITLf-TLSdlloo both in the
cases f(t) E HO: and f(t) E ct.

The structure of TL Sd (t) is very simple because of its linearity on each
sub-arc of L. However, S4 (t), as well as TL Sd (t), is not smooth in general
even if f(t) is smooth. We shall establish analogous results for quadratic
interpolating splines 2 in place of linear ones, so that TL S d (t) will be smooth.
However, if f'(t) E HO: on L, we could not conclude the convergence of
TLS~(t) to TLf'(t). Using cubic interpolating splines of deficiency 2 which
were discussed in [9 J, we may establish such convergence. We also establish
the convergence of TLS t (t) to TLf(t) when f E HO:, where S t is the
modified cubic interpolating spline of deficiency 2 which was also introduced
in [9]. Here TLSt(t) as well as stet) is smooth.

The results of this paper are also valid when L is an open smooth arc ab.

I We use the symbol C, to represent a constant depending on ~ which may take different
values in different cases. Similarly, C represents an absolute constant taking various values in
various cases.

1 K. Atkinson also proved such convergence for "quadratic interpolating splines" which are
different in meaning from those introduced here. He made interpolations of the values of f{l)
at three consecutive knots by a quadratic function. Such splines, in general, are not smooth
too.
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To show this, we note that (1. 7) remains true in this case, provided that the
additional requirements

fn(a) =f(a), fn(b)=f(b) (1.8)

are fulfilled. In fact, we may extend L to a smooth contour L * and
simultaneously extendf(t) tof*(t) on L* such thatf*(t) E He on L*. Since
(1.8) is satisfied, we may extendfn(t) tof:(t) on L* such thatf;(t)=f*(t)
on L * - L, so that f;(t) E HE on L * too. Let e; = f* - f;; then (1. 7) is
valid for e;. Now TL.e: = TLen, Ilenll oo = Ile:lloo. Let us estimate M,(en If
t, t ' E L, then

if t, t' E L * - L, this is trivial. Let tEL, t' E L * - L and let a be situated
on the shorter arc of it'. Then

le;(t) - e;(t')1 = Ien(t)1 = Ien(t) - en(a)1 ~ ME(en) It - a IE

~ ME(en) Iit' I' ~ C,ME(en) It - t'I E,

where we have used a well-known inequality

(1.9)

Therefore,

and thence (1. 7) remains valid.

2. THE LINEAR INTERPOLATING SPLINES

Let L be a smooth contour and f(t) E H U (0 <a < 1) on it. Denote

(We use the conventions Yj+N = Yj' L1Yj+n = L1Yj' etc.) Then, for any linear
interpolating spline Sa (t), we have

tELj , j=O,I,...,N-1. (2.1)

It is evident that

(2.2)
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since, by (1.9),
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where LJsj is the arc-length of L j . Similarly, if t, t' belong to the same L j ,
then

If t E L j , t' E Lk,j* k, then

le,1(t) - e,1(t')1 ~ le,1(t)1 + le,1(t')1 = le,1(t) - e,1(tJl + le,1(tk ) - e,1(t')1

~ C[I t - tl' +Itk - t'la) ~ Cc5a- ell t - tjle +Itk - t' Ie]
~ Cc5a- e(1 !t;l e + It:tT ~ Cc5 a

- e Iit' Ie

~ Cc5a- eIt - t'le, (2.3)'

i.e., (2.3) remains true. Therefore

From (2.2) and (2.4), we obtain, by (1.7),

II TL e,1ll00 ~ Cec5a- e.

(2.4)

(2.5)

Obviously, it is then also true for a = 1.
Now, let us consider the case f(t) E C 1

• We denote the modulus of
continuity of f(r)(t) by wr(c5) (r ~ 0) throughout the paper. Then, if t E L j ,

If(t) - Yj - Dit - tJI = I( If'(r) - D j ) dr I

= ILJl
tj

( dr (+1 [f'(r) - 1'(')) d( 1

w)(c5) 2 J: J:
~-I-I LJSj~CWl(U)U.

Jtj

Similarly, if t, t' E L j , we have

(2.6)

if t, t' belong to different L/s, then as in (2.3)" we also get (2.7). Hence

(2.8)
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Again by (1. 7), we have from (2.6) and (2.8),

II TLeall oo ~ C,W.(<» 01
-,.

If L = ab is an open smooth are, since
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(2.9)

Sa(a) =f(a),

(2.5) and (2.9) remain valid.
Thus, we obtain

Sto.(b)=f(b), (2.10)

THEOREM 1. Let L be a smooth curve, closed or open, and Sa (t) be the
linear interpolating spline off(t). Iff(t) E H a (0 <a ~ 1), then

ITLf - TLSal ~ C,oa-,;

iff(t) E C I
, then

COROLLARY 1. Iff' (t) E H a (0 <a ~ I), then

ITLf - TLSal ~ C,oJ+a-,.

COROLLARY 2. If Iflf(t)1 is bounded, then

ITLf - TLSal ~ C,<>2-'.

(2.11 )

(2.12)

Corollary 2 is also a result due to Atkinson for closed L.
We note that all the values of the C,'s in this section do not depend on A

and so are independent of K a in (1.3); therefore it is not necessary to require
Kto. to be bounded as stated in [7].

3. THE QUADRATIC INTERPOLATING SPLINES

Though there are works describing briefly polynomial interpolating splines
on a Jordan curve [10, 11] and dealing with quadratic splines on an interval
of the real axis [12, 13], we shall discuss the latter in the complex domain
somewhat in detail, whether L is closed or open.

First, let us consider the case L is closed. A quadratic spline S to. (t) inter
polatingf(t) at t/s, if any, may be represented in various ways, for instance,

A.
Sa(t) == Sit) = Yj +Dj(t - tJ +_J (t - tj)(tj+ 1- t),

Atj

tEL j , J=O,I,...,N-I, (3.1)
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with the requirements
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j= 1,...,N, (3.2)

where JDj _ 1 =Dj -Dj _l' so as to guarantee the continuity of S~(t) at
t = tj •

If N is odd, we readily see that (3.2) is uniquely solvable:

j = 0, 1,... , N - 1, (3.3)

. '\'N-l D 0smce L,j=fJ j = .
If N is even, (3.2) is solvable iff

(3.4)

or

In the case L =Qb is an open are, then, for such a spline, expression (3.1)
remains effective, but requirements (3.2) are replaced by

j= 1,..., N - 1. (3.5)

Hence, we have a freedom to choose Ao or An' Or, more generally, we may
subject them to an additional relation

aA o+PA N _ 1 = Y, P* (-It a. (3.6)

On solving (3.5) and (3.6), we get

A _ (-It y+BN - 2

o - (_I)N a - P ,

where

j=I,...,N-I, (3.7)

Thus, we have

THEOREM 2. If L is closed, the quadratic interpolating spline SA(t)
exists uniquely when N is odd and it exists (but not uniquely) iff (3.4) or
(3.4)' is fulfilled when N is even; if L is open, it exists uniquely for arbitrary
N with additional requirement (3.6).
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Now we turn to the problems of approximation.
Again we consider first the case L is smooth and closed (N: odd). We

assume f(t)E C 1
• In order to estimate ef1(t)=f(t)-Sf1(t), by (3.1), it is

necessary to estimate Aj in (3.3). Noting that

we have

(3.9)

and then

I:~ (t - tj)(tj+ r - t) I~ (N - 1) Cw 1(<5) <5 ~ CKf1w r(b), (3.10)

where Kf1 is given by (1.3). Thus, by (3.1), we obtain from (2.6) and (3.10),

(3.11 )

If L is open, the similar estimate (3.9) is valid for IBjl by (3.8) and
thereby also for IAjl on account of (3.7). Hence (3.10) as well as (3.11)
remains true.

Therefore, we have

THEOREM 3. For a quadratic interpolating spline Sf1(t), iff(t)E C 1
, we

have the estimate

whether L is closed (N: odd), or open (N: arbitrary) with requirement (3.6).

We could not expect SHt) to tend tof'(t) in this case even if L is closed.
In fact, we can only easily obtain the estimate

(3.12)

Similarly, if f(t) E C, we can only obtain

(3.13 )

To estimate II TL ef1 (t)11 eo , we assumef'(t)EHCl (O<a< 1). Then (3.11)
becomes

(3.14)
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If I, I' E L j , then, by (3.9),

le~(t) - e~(t')1

~lf(I)-f(I')I+IDil-I')I+ I :~ (t+t'-tj-tj+I)(t-t')!

~ Cit - t' I" + (N - 1) Co" It - t' I
~ Co,,-e It - t'le + CK~o,,-e It - t'l e~ CK~ o,,-e It - t'le. (3.15)

If t, t' belong to different L/s, we may proceed as in (2.3)' and verify (3.15)
remains true. Therefore,

Me(e~) ~ CK~ o,,-e.

Together with (3.14), we have, by (1.7),

II TL e~ 1100 ~ CeK~ 0"-".

(3.16)

(3.17)

Obviously, (3.17) remains valid then if a = 1.
For open arc L, since (2.10) is fulfilled for S~ (t), (3.17) is also valid.
Thus we obtain

THEOREM 4. For a quadratic interpolating spline S~ (t), and f' (t) E H"
(0 <a ~ 1), we have the estimate

ITLf - TLS~I ~ CeK~o"-",

whether L is closed (N: odd), or open (N: arbitrary) with the additional
requirement (3.6).

When K~ < C for a set of {LI}, (3.11) and (3.17) mean the corresponding
uniform convergency when 0 = max ILltjl---+ O.

4. THE CUBIC INTERPOLATING SPLINES OF DEFICIENCY 2

Let L be a smooth curve, closed or not. The cubic interpolating spline of
deficiency 2 may be represented as

(4.1)

t E L j , j = 0,... , N - 1.
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We proved in [9]: if f(t) E cr (r = 1,2,3), then

Ie~r(t)1 = If(P)(t) - S~r(t)1 ~ Cwr(b) br- p (0 ~ p ~ r). (4.2)

Let us estimate II TL e;t> 1100' p = 0, 1. We could not expect to estimate it for
p = 2, 3, since TL st)(t) have unbounded discontinuities at the knots t/s in
these cases.

First, we consider L as closed. We assume f(t) E C'. If t, t ' E L j , then by
(4.1 ),

e/1(t) - e/1(t') = [J(t) - f(t ' ) - Dj(t - t')J

+ YJ - Dj [( )( )2 (' .)( I )2 JAt2 t-tj t-tj+1 - t -ti t -tj+1
J

+ YJ+ 1- Dj [(t _ t.)2 (t - t. ) - (t ' - t.)2 (t' - t· )JLlt2 J J+I .I HI
J

(4.3)

Analogous to (2.6), we have

Noting that

I(t - tj)(t - tj+J2 - (t' - tJ(t ' - tj+1)21

= I.C~ [(r-tj)(r-tj+I)2Jdr!

= I.e (r-tj+I)(3r-2tj-tj+l)dr!

~ If (Sj+ I - s)(s + Sj+' - 2sj) ds I~ C LIs; It - t ' I,

where Sj is the arc-length coordinate of tj , we have

I
1 .1 I

II21~ ,dt;t[J'(tj)-f'(r))dr .CLls}lt-t'I

~Cwl(b)lt-t'l

and a similar estimate for 113 1. Therefore,
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If t, t' belong to different L/s, it is easy to prove this estimate remains true
by similar reasoning as before. Hence,

Together with (4.2) (r = 1, P = 0), we obtain, by (1.7),

II TL e.111oo ~ C,w)(I5) (5)-'. (4.4)

In order to estimate II TL e~ 1100' we assume I' (t) E Ha (0 < a < I). Since

if t, t ' E L j ,

y'-D .1 d
= [f'(t) - I'(t')] + j L1 2 j J -d (r - tj+ ))(3r - 2tj - tj+ I) dr

t j I' r

We have

and a similar estimate for IJ3 1. Obviously, this is also true for IJII. Therefore,

Ie~(t) - e~(t')1 ~ Cl5a~' It - t'l' K~.

which remains true if t, t' belong to different L/s. Thus,

M,(e~) ~ Cl5a- 'K~.
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By virtue of (4.2), we have, by (1.7),
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(4.5)

Then, obviously, it remains true for a = 1.
Let us now assume Jet) E CZ

• We may obtain a better estimate for
IITL e.1llco as well as 'ITLe~llco' We rewrite Sit) as [9J

1
Sit) = Yj + yj(t - tj) + 2 Yj'(t - tj)2

_ [ _, _~" 2J (t-tj)Z (t+tj -2tj+1)
L1Yj Yj L1tj 2 Yj L1tj L1t3

J

[
, 1" ZJ (t - tY (t - lj+ I)

- L1Yj-Yj+\L1tj + 2 Yj+l L1tj L1t]

+ Yj'+ \ - yj' (t - tY (t - tj+ I)
2 L1tj

(4.6)

If t, t' E L j , we have

e.1(t) - e.1(t') = )J(t) - Jet') - yj(t - t') - --} yj' [(t - tY - (t' - t)2] (

- [L1Yj - yj L1tj - --} Yj' L1t} J
1 ./ d

x-3 J -[(r-tj?(r+tj -2tj+I)Jdr
Jt j /' dr

- [JYj - yj+ I Jtj + --} Yj'+ I Jt} J
1 / d

X---:lTf -d [(r-tj)Z(r-tj+\)]dr
LJtj /' r

Y" -Y" ./ d
- j+~J j J -d [(r-tY(r-tj+1)]dr

tj /' r

=H1 +H2 +H3 +H4 •

We have

IHII = If dr {[j"(e)- yj'] de I~ cWz(a)alt- t'l,

wz(a) I ,.I IIH2'~CIAtJ t(s-Sj)(4sj+l-sj-3s)dS ~cw2(a)t5lt-l'l
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and similar estimates for IH 31 and IH 41. So we obtain

which may be verified to be valid also if t, t' belong to different L/s. Thus,

Together with (4.2), we have, by (1.7),

II TL e.:1ll", ~ Cew 2(0) 02-e.

In order to get a better estimate II TL e~ 1100' we differentiate (4.6):

(4.7)

S~(t) = Y~ + Y~'(t - t.) -lL1Y. - Y~ L1t. - ~ Y~' L1t~ J (t - tj)(3t + tj + 4tj+ I)
J j J J J J J 2 J J L1t3

J

-lLlY. - Y' Llt. +~ Y~' L1t~ J (t - tJ(3t - tj - 2tj+ 1)
J J + I J 2 1+ I J L1t3

J

Hence, if t, t' E L j , we have

e~(t) - e~(t') = f'(t) - f'(t') - y}'(t - t') -lLlYj - Y} Lltj - +Yi' Llt} J

I .1 d
X -3 j - (r - tj)(3r + tj - 4tH 1) dr

Lltj t' dr

-lL1Yj - Y}+ 1 L1tj ++YJ'+ 1 L1t} J

1 .1 d
X -3 J -d (r - tj)(3r - tj - 2tj+ I) dr

Lltj I' r

y('+l- y(' .1 d
+ j J J - (r - tj )(3r - tj - 2tj+ 1) dr.

2Lltj t' dr

Using the same reasoning as before, it is easily seen

which is valid also for t, t' belonging to different L/s. Thus,

Me(eD ~ Cw2(0) 0 1
-',
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and thereby, by (4.2), we obtain

II TL e~ lleo ~ CeW 2(t5) 15 1
- e.

If f(t) E C3
, after rewriting Sj(t) as [9]

- yJ'~ I - YJ" (t _ t.) 2 (t - t. )
6 J J+ 1

and proceeding as before, we may get

and hence

In the same manner, we may also get

209

(4.8)

(4.9)

We also note that, if L is open, we have in this case

(4.10)

S~(a) = f'(a), S~(b)=f'(b),

so that all the above results remain true.
Therefore, we obtain

THEOREM 5. Let S tJt) be the cubic interpolating spline of deficiency 2.
Iff(t) E cr, then

ITLf - TLS ~ I~ Cewr(t5) t5r
- e,

ITf'-T S'I&Cw(o)or-l-eL LL1~cr ,

r=1,2,3,

r= 2, 3,

(4.11 )

(4.12)
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and iff'(t) E HD: (0 « a:< 1), then

(4.13 )

whether L is a smooth contour or an open smooth arc.

5. THE MODIFIED CUBIC INTERPOLATING SPLINES OF DEFICIENCY 2

When f(t) does not possess any derivative but only E HD:, in order to
approximate TLf by smooth functions, we may use the modified cubic inter
polating splines introduced in [9 J.

Suppose L is closed and S,1 (t) is the linear spline as in Section 2. By
taking two points t; and tj' , respectively, on each L j _I and L j such that

ItJ"01 = It;'tJ'1 =,l min(Llsj _ l , Lls),

We interpolate S,1(t) cubically on each L; = iJtl' with the values and the first
derivatives of S,1 (t) at t}, t}' and get st(t). Then we defined 191

Sl(t) = S/(t),

= S,1(t),

when tEL},

otherwise,

and proved that, if f(t) E HD: (0 < a ~ 1),

lel(t)1 = If(t) - Sl(t)l:< CfJD:. (5.1 )

Let us estimate Mien. On each arc t]'t;+ I' Sl(t) = S,1 (t), so, if t, t'
belong to it, by (2.3)',

Iel(t) - el(t')1 :< CJD:- eIt - ('Ie.

If t, t' belong to L;, we have, similar to (4.3),

el(t) - el(t') = [S,1(t) - 8,1(t') + D/(t - t')]

+ S;_I(t;) - Dt JI !!.. (r - t!)(r - t!')2 dr
At? I' dr ) }

S'(t") - D* .1 d+ j j j J -(r-t!)2 (r-t!')dr
At; 2 I' dr ) }

= G 1 + G2 + G3 ,

(5.2)
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where
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,1t; = t;' - t; .

Noting that Sitj) = Sj _I (t) and

Sp;') - Sitj) = Dit}' - tj)'

we have

1
IDfl ~ l,1t;IIISj(t;') - Sitj)1 + ISj_l(tj) - Sj_l(tj)ll

1
~ IAt;1 (IDjllt;' - tjl +IDj_lllt; - tjl)

~ c llAtj~1 a + IAtj_~11 aJ
and thereby

On the other hand,

IS' (') D*I-ID DI1t;'-tj ! [1 1]j-I tj - j - j-I - j IAt;1 ~ C IAtj_ll l a + l,1tl-a '

w~ile the modulus of the integral in G2 is not greater than C Ii]t;' 12 Iit' I, and
ItJt}' I/IAt; I~ C, so that we have

and a similar estimate for IG3 1. Therefore,

let(t) - et(t')! ~ Cit - t' In ~ c~a-'I t - t' I', (5.3)

If t, t' are situated in neither of the above two cases, we may then always
find ~o points r l' r 2 E {t;, tJj (ma~e r I = r2) on ~e shorter arc it' such
that trl is a sub-arc of some tit;' or tj't;+ I and so is r2 t'. Then proceeding as
before, we may verify (5.3) remains valid. Thus
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Together with (5.1), we have, by (1.7),

II T[etllco <CeOa- e (5.4)

if a < I, and so also if a = I.
If L is an open smooth are, we need not modify S~(t) near the endpoints a

and b, so that

St(a) =f(a), St(b) =f(b),

and therefore (5.4) is also valid in this case.
Hence, we obtain

THEOREM 6. If L is a smooth curve, closed or not,f(t) E Ha (0 <a < I)
and stet) is the modified cubic interpolating spline of deficiency 2 described
as above, then

ITLf - TLSt 1< ceoa
-
e.

Remark. All the results in this paper are valid when L is a piece-wise
smooth curve without cusps, since inequality (1.9) remains true in this case.
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